Talin controls integrin activation.
نویسنده
چکیده
Tight, dynamic control of the affinity of integrin adhesion receptors for their extracellular ligands (integrin activation) is essential for the development and functioning of multicellular organisms. Integrin activation is controlled by intracellular signals that, through their action on integrin cytoplasmic domains, induce conformational changes in integrin extracellular domains, resulting in increased affinity for the ligand. Recent results indicate that the binding of talin, a major actin-binding protein, to integrin beta tails represents a final common step in integrin activation pathways. The major integrin-binding site lies within the talin FERM (four-point-one, ezrin, radixin, moesin) domain, and binding occurs via a variant of the classical PTB domain (phosphotyrosine-binding domain)-NPxY interaction. Formation of this talin-integrin complex plays a critical role in integrin activation, since mutations, in either talin or integrin beta tails, which disrupt complex formation, inhibit integrin activation. Furthermore, use of RNA interference to knockdown talin expression selectively reveals that talin is essential for integrin activation in response to physiological agonists. Thus the association of the cytoskeletal protein talin with integrin beta cytoplasmic domains is a critical step during integrin activation, and regulation of this step may be a final common element in the signalling pathways that control integrin activation.
منابع مشابه
Structural basis for the autoinhibition of talin in regulating integrin activation.
Activation of heterodimeric (alpha/beta) integrin transmembrane receptors by the 270 kDa cytoskeletal protein talin is essential for many important cell adhesive and physiological responses. A key step in this process involves interaction of phosphotyrosine-binding (PTB) domain in the N-terminal head of talin (talin-H) with integrin beta membrane-proximal cytoplasmic tails (beta-MP-CTs). Compar...
متن کاملLoss of the Rap1 effector RIAM results in leukocyte adhesion deficiency due to impaired β2 integrin function in mice.
Talin is an integrin adaptor, which controls integrin activity in all hematopoietic cells. How intracellular signals promote talin binding to the integrin tail leading to integrin activation is still poorly understood, especially in leukocytes. In vitro studies identified an integrin activation complex whose formation is initiated by the interaction of active, guanosine triphosphate (GTP)-bound...
متن کاملConformational activation of talin by RIAM triggers integrin-mediated cell adhesion
The membrane localization and activation of cytoskeletal protein talin are key steps to initiate the integrin transmembrane receptors' activation, which mediates many cellular adhesive responses such as cell migration, spreading and proliferation. RIAM, a membrane anchor and small GTPase RAP1 effector, is known to bind to the C-terminal rod domain of talin (talin-R) and promote localizations of...
متن کاملCompetition for talin results in trans-dominant inhibition of integrin activation.
The ability of integrin adhesion receptors to undergo rapid changes in affinity for their extracellular ligands (integrin activation) is essential for the development and function of multicellular animals and is dependent on interactions between the integrin beta subunit-cytoplasmic tail and the cytoskeletal protein talin. Cross-talk among different integrins and between integrins and other rec...
متن کاملSmurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation
Integrin activation is an indispensable step for various integrin-mediated biological functions. Kindlin-2 is known to coactivate integrins with Talin; however, molecules that restrict integrin activation are elusive. Here, we demonstrate that the E3 ubiquitin ligase Smurf1 controls the amount of Kindlin-2 protein in cells and hinders integrin activation. Smurf1 interacts with and promotes Kind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 32 Pt3 شماره
صفحات -
تاریخ انتشار 2004